
  
((991166))  444455--55223399  
WWWWWW..IINNFFOOSSEECCUURRIITTYY..CCAA..GGOOVV    

  

SSEECCUURREE  SSOOFFTTWWAARREE  
IINNFFOORRMMAATTIIOONN  SSHHEEEETT  NNOO..  22  

MMAAYY  11,,  22000088  
 

SOFTWARE SECURITY CHECKLISTS 
 

Checklists are essential tools for the development of secure software.  They frame a structured 
review and analyses process, and form the standard of excellence expected for the software 
product.  Software security considerations supported with the use of checklists include: 
 
• Completeness: Checking focuses on traceability among software product objects of 

various types including requirements, specifications, designs, code, and test procedures.  
Completeness analysis may be assisted by tools that trace the components of a product 
object of one type to the components of another type.  Completeness analysis of 
predecessor and successor objects reveals what sections are missing and what fragments 
may be extra.  A byproduct of the completeness analysis is a clear view of the relationship 
of requirements to the code product: straightforward (one to one), simple analysis (many to 
one), and complex (one to many). 

 
•  Correctness: Checking focuses on reasoning about programs by answering informal 

verification and correctness questions derived from the prime constructs of structured 
programming and their composite use in proper programs.  Input domain and output range 
are analyzed for all legal values and all possible values.  State data is similarly analyzed.  
Adherence to project-specified disciplined data structures is analyzed.  Asynchronous 
processes and their interaction and communication are analyzed. 

 
•  Style: Checking is based on project-specified style guidance.  This guidance is expected to 

call for block structured templates.  Naming conventions and commentary are checked for 
consistency of use along with alignment, highlighting, and case.  More advanced style 
guidance may call for templates for repeating patterns and semantic correspondence 
among software product artifacts of various types. 

 
•  Rules of construction: Checking focuses on the software system’s architecture and the 

specific protocols, templates, and conventions used to carry it out.  For example, these 
include interprocess communication protocols, tasking and concurrent operations, program 
unit construction, and data representation. 

California Office of Information Security & Privacy Protection 

 www.oispp.ca.gov  

 



•  Multiple views: Checking focuses on the various perspectives and view points required to 
be reflected in the software product.  During execution many factors must operate 
harmoniously as intended including initialization, timing of processes, memory 
management, input and output, and finite word effects.  In building the software product, 
packaging considerations must be coordinated including program unit construction, 
program generation process, and target machine operations.  Product construction 
disciplines of systematic design and structured programming must be followed as well as 
interactions with the user, operating system, and physical hardware. 

 
The following publicly-available programming and application security checklists are relatively 
widely used for checking for one or more of these characteristics.  These checklists should 
help developers assess the key security aspect of their software at various stages of its life 
cycle. 
 
•  Department of Defense, Defense Information Systems Agency’s Information Assurance 

Support Environment Checklists  
 http://iase.disa.mil/stigs/checklist/  
 
•  Australian Computer Emergency Response Team, AusCERT UNIX and Linux Security 

Checklist v3.0 (publicly released, ver. 25 July 2007) 
http://www.auscert.org.au/render.html?it=7289  

 
•  Open Web Application Security Project (OWASP), OWASP Testing Guide v2  
 http://www.owasp.org/index.php/OWASP_Testing_Guide_v2_Table_of_Contents
 
•    NASA, Software Security Checklists

http://sw-assurance.gsfc.nasa.gov/disciplines/quality/index.php#checklists 
 

•  Visa U.S.A, CISP Payment Application Best Practices Checklist
http://usa.visa.com/merchants/risk_management/cisp.html?it=c|/merchants/index.html|Card
holder%20Information%20Security%20Program%20%28CISP%29  

 
•  NIST, National Checklist Program Repository  

http://checklists.nist.gov/   
 

CCRREEDDIITTSS  AANNDD  AACCKKNNOOWWLLEEDDGGEEMMEENNTTSS::   
Goertzel, Karen Mercedes, et al, Security in the Software Lifecycle: Making Software 
Development Processes—and the Software Produced by Them—More Secure, Draft Version 
1.2 (August 2006), U.S. Department of Homeland Security 

California Office of Information Security & Privacy Protection 

 www.oispp.ca.gov  

 

http://iase.disa.mil/stigs/checklist/
http://www.auscert.org.au/render.html?it=7289
http://www.owasp.org/index.php/OWASP_Testing_Guide_v2_Table_of_Contents
http://sw-assurance.gsfc.nasa.gov/disciplines/quality/checklists/pdf/critical_design_review.pdf
http://usa.visa.com/merchants/risk_management/cisp.html?it=c|/merchants/index.html|Cardholder%20Information%20Security%20Program%20%28CISP%29
http://usa.visa.com/merchants/risk_management/cisp.html?it=c|/merchants/index.html|Cardholder%20Information%20Security%20Program%20%28CISP%29
http://checklists.nist.gov/

